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ABSTRACT  
Autonomous systems, including self-driving cars and air vehicles, have caught the imagination of the press and 
the public. However, broader adoption of such systems in safety-critical applications has been the subject of 
intense debate and scrutiny. The stunning performance of deep learners compared to extant methods, including 
pattern matching, statistical methods, and legacy machine learning algorithms, has taken the research world by 
storm. This has naturally lead the DoD community to ask the question: “How do we harness this technology 
being unleashed upon the world?” Before we answer this question, however, it is important to note that trust is 
integral to DoD applications, including autonomous systems, and ensuring reliable system operations is 
paramount. Therefore, we need strategies that harness deep learning algorithms to provide the DoD and NATO 
with autonomous systems that are robust, secure, timely and dependable. 

 

1.0 INTRODUCTION 

Deep learning has received wide press in the recent past [1]. Although requiring massive computational power to 
train, these algorithms show great promise by being able to recognize objects with human level precision [2, 3] 
and translating human speech in real-time [4]. However, in addition to coming to grips with recent advances in 
deep learning, the DoD and NATO communities must also understand its limitations. For instance, data sparsity 
and data poisoning attacks may lead to classification and training errors, producing incorrect results which can 
be both embarrassing and damaging. Two recent examples are Google’s image classifier mis-identifying humans 
as gorillas [5] and Microsoft’s chatbot Tay learning to spew racist and misogynistic hate speech minutes after 
being turned on [6]. More disturbing, the invention of generative adversarial networks (GAN) shows that deep 
learning algorithms can be deliberately tricked by adversarial examples [7]. A trained neural network can be 
tricked into grossly misclassifying objects with extremely high confidence, by mere manipulation of input 
images not discernible to the human eye or even by images that look like noise to the human viewer [8]. The 
dangers of adversarial attacks can have a profound impact on society -- self-driving vehicles can be hijacked or 
misdirected with seemingly innocuous signage [9], and system security can be compromised with tampered data. 

We must have assurance that Machine Learners cannot be fooled. To obtain 100% assurance may be an 
impossible task; however, we must raise the bar from the low level that it is at presently. Known as adversarial 
attacks, a representative paper discussing this issue is Kurakin 2017 [10]. This is also an issue when it comes to 
the assurance of biometric devices. To make matters even worse, a very recent article in The Register (2018) 
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[11] has shown how placing random sub-images in an image that we are attempting to classify can throw the 
Machine Leaner totally off. In addition, our research will focus on ways to improve image classification 
performed via Artificial Intelligence (AI). We also note that Machine Learners can even make gross errors even 
without an adversarial attack. Amazon’s Rekogntion tool [12], just misclassified 28 members of Congress as 
criminals using facial recognition (7/2018) without any trickery. Thus, we must make sure that AI Machine 
Learners do what they are supposed to do, and do not do what they are not supposed to do. 

2.0 APPROACH 

An approach that shows promise, and something that we plan to work on, is using subtle differential geometric 
and topological techniques as an add-on to the current machine learning techniques. We hope to develop 
signatures that must be used in addition to any deep learning neural nets. In addition to image signatures we are 
developing a theory of image complexity based upon Information Geometry. Our thinking is that the best way to 
subtly fool a machine learner is in a region of high complexity. 

2.1 Misconceptions about ML 
A popular misconception about machine learning (ML), which provides an illusion of success, is to test a 
neural network on its training data. However, what many people do not realize is that the fundamental goal of 
ML is to generalize beyond the examples in the training set [13]. This is because no matter how much training 
data we provide, it is unlikely that the same data will be encountered during testing. This corresponds to the 
“no free lunch” theorem of Wolpert and Macready [14], which states that no learner can beat random guessing 
over all possible functions to be learned. Consider for example learning a Boolean function over 100 variables 
from a million examples. Of the 2100 possible classes to be learned, we have only provided 106 examples. 
There are additionally 2100 – 106 ≈ 1.3 x 1030 possible inputs whose classes are yet unknown. Clearly, there is 
no way to do this that beats flipping a coin. Or is there? 
 

2.1.2 The Manifold Hypothesis 

Experts in deep learning algorithms such as John Launchbury (formerly at DARPA and current Chief Scientist 
at Galois) contend that their phenomenal success is due to what is termed the manifold hypothesis [15]. High-
dimensional natural data tend to clump and be shaped differently when visualized in lower dimensions. 
Therefore, our working assumption is that each manifold in a deep neural network represents a unique 
functional entity, and an understanding how the network classifies its input data can be gained be mapping 
these manifolds. Unlike extant approaches such as Reluplex [16], which try to reason about the entire 
network, this insight gives us the ability to map decision boundaries of a feed-forward neural network a layer 
at a time, thereby mitigating the state explosion problem encountered by extant approaches such as Reluplex.  
 

2.2 Statistical Manifolds 
In addition to using standard Gaussian surface geometry and algebraic topological techniques, we will use a 
natural and intuitive metric on probability distributions, the Fisher-Rao metric [17] from Information Geometry, 
to form a non-standard Riemannian manifold called the Statistical Manifold. Statistical Manifolds have recently 
been used in many applications, running the gamut from belief propagation, manifold learning, and neural nets, 
to Grover's search algorithm in quantum computation. Using a Statistical Manifold is the preferred way to view 
parameterized distributions as a metric space, so that the concepts of close and far are well defined, intuitive, and 
tractable. The Fisher-Rao metric, which is the Riemannian metric of a Statistical Manifold, has been shown to be 
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the natural, parameter-invariant method of computing probabilistic distribution distances. Additionally, the 
Fisher-Rao metric has recently been applied, albeit in a primitive manner, to image analysis, and its use in 
stenographical analysis has not been explored at all. We will remedy this situation. The Fisher-Rao metric 
incorporates, as special/approximate cases, the previous methods of distinguishing distributions, such as mutual 
information, the Kullback-Liebler divergence, the Jensen-Shannon divergence, the Hellinger distance, the Renyi-
Chernoff distance, the Bhattacharyya distance, etc. To discover the relationship between images and shape 
analysis, and the Fisher-Rao metric induced Statistical Manifold, we will derive new methods to measure the 
geometric structure of images.  

2.2.1 Connecting Differential Geometry and Algebraic Topology 

Connections between differential geometry and algebraic topology are numerous and will be utilized in our 
research. For example, there is the famous Gauss-Bonnet theorem, which relates the surface integral of the 
sectional curvature to the Euler characteristic (an algebraic concept). The algebraic theory of homology and 
cohomology can be developed on a differentiable manifold via differential forms. Critical points of the "height" 
function can determine the homological structure of certain spaces via Morse theory. Ricci curvature lets one 
obtain bounds on the Betti numbers, which are the rank of the homology groups. There are generalizations of 
Gauss-Bonnet involving the differential characteristic classes and differential operators that allow the theorem to 
be extended into the Atiyah-Singer index theorem (which generalizes the relationship between analytic, 
topological and geometric indices). These and similar techniques must be investigated to fully understand what 
characterizes an image, and how it can be manipulated. 

2.3 Available Variance 
A major question we plan to explore is how much variance is available to fool a machine learner, while keeping 
the curvature and topological signatures essentially unchanged.  

We will explore this wiggle room as it applies to machine learning and steganography (hiding information so 
that its very existence is unknown). There has been minimal research applying the inherent Gaussian 
Riemannian structure to steganography, and none has been performed using Statistical Manifolds, which have 
been shown to be valuable in other areas of image analysis. When one is researching steganography, one must 
utilize the features of the surface and modeling geometries---not just frequency values, or JPEG constraints, for 
example. We will start with the classical approach of using the standard Gaussian surface normal and principal 
curvatures to describe a surface, and then add the second geometric structure of the Statistical Manifold structure 
induced by the Fisher-Rao metric. We will use existing image databases and particular images of Naval interest. 
Various curvature features will be created to reconstruct the image or certain landmark features. We will 
investigate the robustness of these geometric features in terms of image integrity and information hiding 
(steganographic bandwidth). Once basic geometric structures have been identified, we will test their robustness 
to withstanding manipulation. Concepts that combine differential geometry and algebraic topology will be used. 
We have discussed some of the relationships between topology and geometry above. However, there has been 
very little work combining them with respect to analyzing both steganography and/or machine learning. 

2.4 Shape Modeling 
Shape modeling is an ongoing problem in image analysis and visualization. A recent approach models basic 
shapes by way of probability distributions for facial recognition. Image morphing and identification is obtained 
by travelling along geodesics given by the Fisher-Rao metric. The Statistical Manifolds formed from the Fisher-
Rao metric can be manipulated via diffeomorphism groups to obtain certain standard forms. This research is in 
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its infancy, and the inability of obtaining closed form geodesics (locally length minimizing curves) is a barrier 
that we plan to overcome. (We note that diffeomorphism groups in shape analysis have recently been shown to 
be of interest in the field of quantum gravitation.) Our hypothesis is that regions of high volume (similar to 
regions of high frequency in discrete Fourier image transforms), with respect to the Fisher-Rao metric, are ripe 
for steganography and of course affect the distinguishability of information parameters. The Fisher-Rao metric 
allows one to obtain the volume element for the Statistical Manifold. This result is difficult to obtain in closed 
form, so we will develop numerical methods, when needed, to determine stego-rich and stego-poor regions of 
the image in terms of the Fisher-Rao volume element, and in terms of standard Gaussian and topological 
techniques. Additionally, a detailed analysis of the geodesics for the Fisher-Rao Riemannian metric is a 
necessity for calculating distance. In general, closed form solutions of these geodesics are difficult to obtain. We 
will analyze and invent new approximate methods, closed form methods, and associated relationships to well-
known partial differential equations from mathematical physics as alternatives. A thorny issue is that the Von-
Mises distribution used in shape analysis, when viewed via the Fisher-Rao metric, forms a Statistical Manifold 
that is not globally diffeomorphic (equivalent) to Euclidean space. The manifold has a non-trivial topological 
structure that makes geodesic calculations difficult, but this must be pursued. 

3.0 EXPERIMENTATION 

On the practical side, we are constructing a toolset for robust machine learning centered around data that can 
be modeled by two-dimensional tensors (2-D tensors), which includes images, video, and handwriting handled 
by current commercial tools. Datasets within the DoD include numerous other application categories that are 
modeled by 2-D tensors. These includes spectrograms – visual representations of the spectrum of frequencies 
of electromagnetic waves, sound, or other signals as they vary with time – and pulse-Doppler videograms of 
received radar returns. In the cyber domain, as well as in statistics, econometrics, epidemiology, genetics, and 
related disciplines, causal graphs [18] – also known as path diagrams or causal Bayesian networks – encode 
assumptions about the data generation process, which can also be modeled as 2-D tensors. 
 

3.1 Testing the Manifold Hypothesis 
In order to test the Manifold Hypothesis, we trained a neural network on a simple classification problem 
modeled by two-dimensional Gaussian processes A and B. The decision problem is to assign each instance of 
test data to one of the two hypotheses HA or HB. The two Gaussian processes A and B have significant 
overlap; therefore, it is impossible for a classifier to achieve an accuracy of 100%. However, we can set a 
benchmark for classification accuracy by calculating the optimal decision boundary and the average 
probability of misclassification of an ideal classifier, i.e., a Gaussian Classifier using Bayesian Decision 
Theory, using which we determined that the ideal classification boundary is a circle whose radius is 
approximately equal to twice the variance of Gaussian Process A, and which is centered slightly to the left of 
the origin. We trained a three-layer feed forward network with two input neurons, four hidden neurons, and 
two output neurons, using the back-propagation algorithm [19], optimizing the number of hidden neurons, the 
learning, and momentum constants through a process of trial and error. We determined the average probability 
of misclassification to be 0.183, which is very close to the theoretical optimum of 0.182. We plotted the 
decision boundary of the feedforward classifier using test samples uniformly distributed over the two input 
dimensions and overlaid it with the theoretical optimum boundary of the Bayesian classifier. The results are 
shown in Figure 1-1. 
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Figure 1-1: Decision Boundary of a Feedforward Classifier Overlaid on Optimum Bayesian 

Boundary.Legend: [I] Optimum Bayesian Boundary [I] Learned Boundary 
 

Notice however that this approach soon becomes intractable for inputs of high dimensions -- the biggest 
problem in machine learning is the “curse of dimensionality” [20] which posits that generalizing correctly 
becomes exponentially harder with increasing input dimension. We were able to visually inspect and confirm 
our Smoothness Assumption, i.e., that each point in the input layer is enclosed by a classification manifold. 
We also identified the minimum norm required to perturb a test example into a misclassification region, i.e., 
into a region of no overlap. Robustness of our training algorithms can be improved by regularization, such as 
dropouts, which has been shown to approach the performance of the ideal Bayesian classifier. We plan to 
defend against adversarial attacks using a novel approach we call Stochastic Pruning. 
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4.0 FUTURE WORK 

For autonomous systems that employ deep learning, additional measures have to be instituted to ensure trust. 
The following summarizes our approach: 

• Develop a universal attack framework to provide a comprehensive set of adversarial manipulations 
using measures of variance pioneered by Carlini and Wagner [21]. 

• Include these adversarial examples during training to harden the neural network against data 
poisoning and data sparsity attacks. 

• Develop metrics against which to measure robustness of trained networks. We shall evaluate and 
build upon extant approaches such as adaptive regularization to ensure robustness against all 
adversarial attacks, and semidefinite relaxation methods which provide certificates guaranteeing that, 
for a given network and test inputs, no attack can force classification errors to exceed a given value. 

• Extant approaches, such as Reluplex of Stanford researchers [16], reason about a trained feed-forward 
network in its entirety and therefore do not scale. Reluplex handles around 300 neurons, whereas the 
CNN used in Nvidia’s autonomous car [22] has around a quarter million. We propose instead a 
mathematical framework to propagate verification conditions layer-by-layer, ensuring scalability. 

• Create techniques analogous to model checking [23] and Satisfiability Modulo Theories (SMT) [24] 
solving for mapping the manifolds of each layer of a feed-forward network by exhaustive search near 
regions of misclassification due to adversarial attacks. Investigate decision procedures for real closed 
fields and propose methods for cylindrical algebraic decomposition. Plain Simplex may be sufficient 
for polyhedral regions. 

• Explore reduction methods such as counterexample guided abstraction refinement (CEGAR) [25] to 
ensure finiteness of the search. 

• Construct tools to provide certificates of guarantee (at a certain confidence level) that are implied by 
the absence of adversarial examples. 

 

5.0 CONCLUSIONS 

Preventing machine learners from being fooled is of extreme importance as the DoD relies more and more on 
Artificial Intelligence. The accuracy and robustness of biometric devices is also of importance as the DoD 
attempts to secure its assets and provide internal security. Furthermore, the ongoing issue of image 
steganography is of continued importance to the DoD as both an offensive technique and as a tool for 
detection. Invention of new theories on manifold learning and implementation of developer-friendly tools, 
methods, and guidelines, will assure safety and trust in autonomous unmanned systems running custom DoD 
software. By following a process for certifying autonomous systems prescribed by the outcome of this 
research, DoD organizations can gain authority to operation (ATO) expeditiously, at low cost, and with 
limited expertise in the mathematics underlying our formal methods and tools. 
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